Status of Muon Acceleration

J. Scott Berg Brookhaven National Laboratory 18 October 2001

Outline

- Study II acceleration studies
- Future R&D
 - ◆ Dynamics studies of conventional scheme
 - ◆ Hardware issues
 - ◆ Dogbone geometry
 - ◆ FFAG Schemes

Study II Acceleration Studies

- Work primarily performed by V. Lebedev and A. Bogacz at Jefferson Lab (and Fermilab)
- Described scheme to accelerate from 129 MeV (KE) to 20 GeV.
 - ◆ Linac to 2.48 GeV
 - ◆ Single 4-pass recirculating accelerator to 20 GeV
- Compared to Study I
 - ◆ Less energy gain in linac
 - ◆ Lower final energy (20 vs. 50 GeV), one RLA
 - Cost reduction

Study II: Linac

- Matching section from cooling to accelerating linac
 - ◆ Adiabatically converts beta functions from cooling values to acceleration values
 - ◆ Partially accelerates
- Linac cryostats: three types
 - Initally large beam size: need short focal length
 - Gain real-estate gradient by having fewer solenoids later
 - **★** Additional space also needed for shielding
 - ★ Long gap between cavities to decouple
 - Reduce aperture later on
 - **★** Higher gradient
 - **★** Shorter distance to decouple
 - ◆ Real-estate gradients: 4.47, 5.59, 7.79 MV/m
- Limited to two-cell cavities: power into coupler, mechanical

Study II: Recirculating Accelerator

- Four passes
 - Switchyard limits
- Triplet focusing: reduces envelope (beta function) chromaticity
- Linac cryomodules like long cryomodules from initial linac
- Input full energy width $\pm 7.5\%$, output $\pm 1.6\%$
- Preliminary arc design
 - Factor of 2 transverse emittance blowup
 - Output acceptance is 30π mm
- Beam loading has only minor effect

R&D: Dynamics Studies

- Full nonlinear study
 - ◆ Magnets are relatively short, large aperture: substantial end effects
 - Study with full nonlinearities
 - **★** Fringe fields
 - **★** Sextupoles
 - ◆ Substantial emittance growth
 - * Understand
 - **★** Cure
- More detailed studies of bunches with beam loading
- Improving longitudinal dynamics: further reduction in output energy spread?

R&D: Hardware

- Magnets: short, large aperture
 - Fringe fields
 - **★** Determine for given design
 - ★ Correct with pole tip, etc.
 - ◆ Need to keep cost down: many arcs
- Switchyard
 - Ensure that optics and floor layout are consistent for large momentum spread beam

R&D: Dogbone Geometry

- Geometry allows tradeoff between arc and linac costs
 - ◆ Same number of linac passes, half as much linac
 - ◆ Same amount of linac, about half as much arc
 - ◆ In reality, something in-between
- Switchyard easier
- Fewer decays
- Cost optimization/comparison graph
- Increased costs
 - Tunneling
 - ◆ Beamline crossings

Costs for Different Geometries

R&D: FFAG Recirculating Accelerators

- Replace multiple arcs with single arc having large energy acceptance
- Hope for cost reduction
 - ◆ More turns, less linac required
 - Single arc less costly than multiple arcs
 - Some aspects more costly
 - ★ Wide energy acceptance arc more expensive than small acceptance
 - ★ Multiple arc accelerator can cover larger energy range than single arc
- Switchyard eliminated
- Dynamic aperture
 - ◆ Recent progress encouraging (C. Johnstone)

FFAG Recirculating Accelerators (cont.)

- Path length variation with energy
 - ◆ FFAG arc has significant variation in path length with energy
 - Unable to make bunch return to same RF phase at all energies
 - ◆ Cannot shift phase of RF quickly enough at low energies
 - \star To push power in requires Q too low: high power requirements
 - ★ Ferrite shifters most likely reduce Q too much also
 - ◆ Requires isochronous-type operation
 - Quadratic variation of path length with energy
 - **★** May be more complicated when nonlinearity considered

FFAG Arc Path Length

FFAG Recirculating Accelerators (cont.)

- Path length problem not as bad as expected
 - ◆ For a given range of path length, expect maximum number of turns before phase slips too far
 - If choose parameters correctly, arbitrary number of turns
 - ★ Crosses crest three times
 - ★ Must choose initial phase and reference path length correctly
 - **★** More turns, initial phase further off-crest
 - ★ Linac length limits to nonzero value for large number of turns
 - ⋆ Acceptance not addressed
 - Alternate method: phase each cavity separately (Koscielniak)
 - ★ Energy gain on each pass same
 - ★ Approx 30% excess voltage required
 - ★ 5 turns at 200 MHz gives very large acceptance (1 eV-s)
 - **★** Adding harmonics improves more

RF Phase Evolution 3.1-7.9 GeV, 15 Half-turns, 30 cm Path Error

Optimized FFAG Isochronous Acceleration 3.1-7.9 GeV, 30 cm Path Error

Input Bunch Distribution

Koscielniak FFAG Phase Scheme

Output Bunch Distribution

FFAG Recirculating Accelerators (cont.)

- RF phasing methods
 - ◆ Can allow non-isochronous operation
 - **★** Better for beam loading
 - **★** Smaller energy spread
 - * Requires relative frequency shift of 10^{-3} to 10^{-2}
 - Storage cavity methods
 - ★ Store energy in high-Q cavity: low peak power
 - ★ Rapidly transfer to low-Q cavity, only there when beam present
 - **★** Shift frequency in low-Q cavity
 - Ferrite/PIN diode methods
 - **★** Tend to lower Q significantly
 - ★ Placement and material choice may improve